Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Three 1,2,4-triazole derivatives containing subtituted benzyl and benzylamino groups

Veysel T. Yilmaz, ${ }^{\text {a* }}$ Canan Kazak, ${ }^{\text {b }}$ Erbil Ağar, ${ }^{\text {a }}$ Bahittin Kahveci ${ }^{\text {c }}$ and Kutalmis Guven ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey, ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey,
${ }^{\text {c Department of Chemistry, Rize Faculty of Arts and Sciences, Karadeniz Technical }}$ University, Rize, Turkey, and department of Physics, Faculty of Arts and Sciences, Kirikkale University, 72450 Yahsihan, Kirikkale, Turkey
Correspondence e-mail: vtyilmaz@omu.edu.tr

Received 4 October 2004
Accepted 21 December 2004
Online 22 January 2005
The title compounds, 4-benzylamino-3-(4-methylbenzyl)-1 H -1,2,4-triazol-5(4H)-one, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$, (I), 3-(4-methylbenzyl)-4-(4-methylbenzylamino)-1 H -1,2,4-triazol-5(4H)-one, $\mathrm{C}_{18} \mathrm{H}_{20}-$ $\mathrm{N}_{4} \mathrm{O}$, (II), and 3-(4-chlorobenzyl)-4-(4-methylbenzylamino)$1 H$-1,2,4-triazol-5(4H)-one, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}$, (III), were obtained from the corresponding Schiff base in the presence of diglyme and NaBH_{4}. Each compound contains a 1,2,4-triazole ring and two benzene rings, which are essentially planar. The molecules are linked by a combination of intermolecular N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Additionally, there is a weak $\pi-\pi$ stacking interaction in (I), involving the benzene ring of the aminobenzyl group and the partially aromatic 1,2,4triazole moiety, with a centroid-centroid distance of 3.7397 (10) Å.

Comment

1,2,4-Triazole and its derivatives have been used as starting materials for the synthesis of many heterocycles (Desenko, 1995). Substituted 1,2,4-triazoles have also been used as ligands to obtain metal complexes with specific properties (Kaszuwara et al., 1992; Prins et al., 1996; Drabent et al., 2004). Studies indicate that the 1,2,4-triazole moiety is associated with anticorrosion (Al-Kharafi et al., 1986) and anti-inflammatory action (Gupta \& Bhargava, 1978), and also with pharmacological activities, such as antiviral, analgesic, antimicrobial, antidepressant and antifungal effects (Jones et al., 1965; Sughen \& Yoloye, 1978; Cansiz et al., 2001; Kane et al., 1988; Massa et al., 1992). As a contination of our studies of the structural analysis of Schiff-base-containing substituted 1,2,4triazole derivatives (Arslan et al., 2004; Yilmaz et al., 2004), we report here the crystal and molecular structures of three sub-
stituted 1,2,4-triazole compounds, namely 3-(4-methylbenzyl)-4-benzylamino-1 H -1,2,4-triazol-5(4H)-one, (I), 3-(4-methyl-benzyl)-4-(4-methylbenzylamino)-1 H -1,2,4-triazol-5(4H)-one, (II), and 3-(4-chlorobenzyl)-4-(4-methylbenzylamino)- 1 H -1,2,4-triazol-5(4H)-one, (III), which are expected to exhibit pharmacological properties and act as suitable ligands in coordination chemistry. The title compounds were obtained from the corresponding Schiff base in the presence of diglyme and NaBH_{4}.

(II)
(III)

Views of the molecules of compounds (I)-(III), including the atom-numbering schemes, are shown in Figs. 1-3. Compounds (I)-(III) consist mainly of three bonded planar rings, namely a triazole ring (A), a benzyl benzene ring (B) and a benzylamino benzene ring (C). The r.m.s. deviations for rings A, B and C are $0.007,0.004$ and $0.001 \AA$, respectively, in

Figure 1
The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
(I), $0.002,0.002$ and $0.007 \AA$ in (II), and $0.001,0.005$ and $0.002 \AA$ in (III). The molecules of (I)-(III) adopt similar conformations (Figs. 1-3). The dihedral angles between rings A / B and A / C are 62.05 (5) and 46.44 (5) ${ }^{\circ}$, respectively, in (I), $69.99(10)$ and $44.89(10)^{\circ}$ in (II), and 67.58 (12) and 49.48 (10) ${ }^{\circ}$ in (III). A non-planar disposition of the three rings has been observed in similar 1,2,4-triazole derivatives (Zhu et al., 2000; Bruno et al., 2003; Arslan et al., 2004; Yilmaz et al., 2004). The slightly different rotations of these rings may be due to stacking interactions of the 1,2,4-triazole moiety. The orientation of the rings obviously leaves atom N 2 available as a possible metal coordination site, together with the adjacent atoms $\mathrm{N} 1, \mathrm{~N} 3$ and N 4 . The coordinating and pharmacologically active fragments are connected to an aromatic spacer (the benzyl group), controlling the distance between the sites and also allowing a possible electronic coupling. However, the $\mathrm{C} 8-\mathrm{C} 9$ bonds in (I) and (II) [C7-C8 in (III)] are almost the same length, thus confirming the absence of important conjugation effects.

Figure 2
The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 3
The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.

The five-membered triazole rings in (I)-(III) have the same planar geometry as all similar fragments reported in the Cambridge Structural Database (ConQuest, Version 3.6; Allen, 2002). The interatomic distances within the thiazole rings of (I)-(III) are not equal, ranging from 1.287 (4) to 1.394 (3) \AA, but similar bonds display comparable bond lengths and angles, as listed in Tables $1-3$. The C $9-\mathrm{N} 2$ bonds in (I) and (II) [C8-N2 in (III)] is the only double bond, being much shorter than the other $\mathrm{C}-\mathrm{N}$ bonds in the thiazole ring. On the other hand, the $\mathrm{C} 11-\mathrm{N} 4$ bond in (I) and (II) [C10N4 in (III)] has single-bond character and is significantly longer than the $\mathrm{C}-\mathrm{N}$ bonds in the ring. The remaining bond lengths in (I)-(III) show no unusual values. The N3-N4$\mathrm{C} 11-\mathrm{C} 12$ methylamine system in (I) and (II) [$\mathrm{N} 3-\mathrm{N} 4-$ $\mathrm{C} 10-\mathrm{C} 11$ in (III)] is not planar, as evidenced by the torsion angles, which have a mean value of $75(1)^{\circ}$. However, the same fragment with a $\mathrm{C}=\mathrm{N}$ double bond in a 1,2,4-triazole derivative was reported to be planar (Bruno et al., 2003).

Figure 4
A packing diagram for (I). H atoms bound to C atoms have been omitted for clarity.

Figure 5
A packing diagram for (II). H atoms bound to C atoms have been omitted for clarity.

Figure 6
A packing diagram for (III). H atoms bound to C atoms have been omitted for clarity.

The packing of the molecules in (I)-(III) are shown in Figs. 4-6. Analysis of the crystal packing of the title compounds reveals that the molecules are linked by means of similar intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Tables 4-6). It seems that the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are stronger than the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions. In contrast with (II) and (III), in (I), a weak $\pi-\pi$ stacking interaction between the benzene ring of the aminobenzyl group and the partially aromatic 1,2,4-triazole ring is observed $\left[C g \cdots C g\left(x, \frac{3}{2}-y\right.\right.$, $\frac{1}{2}+z$) $=3.7397$ (10) A $]$. Similar interactions in (II) and (III) are longer than $4.5 \AA$.

Experimental

The syntheses and characterizations of the title compounds have been reported elsewhere by Kahveci \& Ikizler (2000). Single crystals suitable for X-ray measurements were obtained by crystallization from ethyl acetate in each case.

Compound (I)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=294.35$
Monoclinic, $P 2_{1} / c$
$a=17.0906(13) \AA$
$b=5.9866(3) \AA$
$c=15.6784(15) \AA$
$\beta=108.496(7)^{\circ}$
$V=1521.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.285 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer
Rotation scans
20832 measured reflections
3008 independent reflections
2054 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation

Cell parameters from 12405 reflections
$\theta=1.3-26.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, colourless $0.49 \times 0.43 \times 0.19 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.053 \\
& \theta_{\max }=26.1^{\circ} \\
& h=-21 \rightarrow 21 \\
& k=-7 \rightarrow 7 \\
& l=-19 \rightarrow 19
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.106$
$S=0.93$
3008 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0697 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.020 (2)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

C8-C9	$1.4875(18)$	C11-N4	$1.476(2)$
C9-N2	$1.3004(17)$	C11-C12	$1.497(2)$
C9-N3	$1.3625(17)$	N1-N2	$1.3911(17)$
C10-N1	$1.3390(19)$	N3-N4	$1.4069(16)$
C10-N3	$1.3825(16)$		
			$112.41(11)$
N2-C9-N3	$110.59(11)$	C10-N1-N2	$108.87(11)$
N1-C10-N3	$103.36(11)$	C9-N3-C10	$111.08(12)$
N4-C11-C12	$110.77(12)$	N3-N4-C11	
C12-C11-N4-N3	$75.04(15)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.97(2)$	$1.81(2)$	$2.7676(15)$	$169.9(18)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.888(18)$	$2.236(19)$	$3.0933(18)$	$162.2(15)$

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y-1, z$.

Compound (II)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=308.38$
Monoclinic, $P 2_{1} / c$
$a=16.8511$ (19) A
$b=5.996$ (5) A
$c=17.650(2) \AA$
$\beta=109.403$ (9) ${ }^{\circ}$
$V=1682.0(14) \AA^{3}$
$Z=4$
$D_{x}=1.218 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer
Rotation scans
Absorption correction: integration (X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.962, T_{\text {max }}=0.987$
22631 measured reflections
3284 independent reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.078$
$S=0.97$
3284 reflections
214 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation

Cell parameters from 9419
reflections
$\theta=1.2-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, colourless
$0.50 \times 0.44 \times 0.40 \mathrm{~mm}$

1482 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-7 \rightarrow 7$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.021 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0090 \text { (7) }
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{C} 8-\mathrm{C} 9$	$1.486(2)$	$\mathrm{C} 11-\mathrm{N} 4$	$1.476(2)$
$\mathrm{C} 9-\mathrm{N} 2$	$1.298(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.506(3)$
$\mathrm{C} 9-\mathrm{N} 3$	$1.369(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.3858(18)$
$\mathrm{C} 10-\mathrm{N} 1$	$1.342(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.407(2)$
$\mathrm{C} 10-\mathrm{N} 3$	$1.382(2)$		
$\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 3$	$110.23(16)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$105.11(15)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{N} 3$	$103.13(16)$	$\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 10$	$108.97(15)$
$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$	$110.60(16)$	$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 11$	$110.56(15)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{N} 2$	$112.55(15)$		
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 4-\mathrm{N} 3$	$77.5(2)$		

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.91	$2.740(2)$	163
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.95(2)$	$2.12(2)$	$3.011(3)$	$154.3(17)$

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y-1, z$.

Compound (III)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}$	Mo $\mathrm{K} \alpha$ radiation
$M_{r}=328.80$	Cell parameters from 18401
Orthorhombic, Pha2	reflections
$a=16.5043(10) \AA$	$\theta=1.2-25.9^{\circ}$
$b=17.4355(13) \AA$	$\mu=0.23 \mathrm{~mm}^{-1}$
$c=5.919(3) \AA$	$T=293(2) \mathrm{K}$
$V=1703.1(9) \AA^{3}$	Prism, colourless
$Z=4$	$0.50 \times 0.38 \times 0.17 \mathrm{~mm}$
$D_{x}=1.282 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Stoe IPDS-2 diffractometer	$R_{\text {int }}=0.117$
Rotation scans	$\theta_{\max }=25.9^{\circ}$
22931 measured reflections	$h=-20 \rightarrow 20$
3228 independent reflections	$k=-21 \rightarrow 21$
1815 reflections with $I>2 \sigma(I)$	$l=-6 \rightarrow 7$

Table 5
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$) for (III).

C7-C8	$1.489(2)$	$\mathrm{C} 10-\mathrm{N} 4$	$1.473(3)$
$\mathrm{C} 8-\mathrm{N} 2$	$1.288(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.498(3)$
$\mathrm{C} 8-\mathrm{N} 3$	$1.365(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.389(2)$
$\mathrm{C} 9-\mathrm{N} 1$	$1.332(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.400(2)$
$\mathrm{C} 9-\mathrm{N} 3$	$1.387(2)$		
			$112.95(16)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$111.39(15)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2$	$108.10(17)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 3$	$103.22(18)$	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$	$111.39(16)$
$\mathrm{N} 4-\mathrm{C} 10-\mathrm{C} 11$	$111.12(16)$	$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 10$	
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 4-\mathrm{N} 3$	$-76.2(2)$		

Table 6
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.93	$2.7349(19)$	156
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.92(2)$	$2.13(2)$	$2.990(3)$	$156.2(19)$

Symmetry codes: (i) $-x,-y+1, z+\frac{1}{2}$; (ii) $x, y, z-1$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.053$
$S=0.74$
3228 reflections
213 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0002 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
The amine H atoms in (I) were refined freely, whereas in (II) and (III), the H atom on N 1 was placed in a calculated position, while the H atom on N 4 was refined freely. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The methyl H atoms were not well resolved and no great reliance should be placed on their reported coordinates.

For all compounds, data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); publication software: SHELXL97.

The authors thank Ondokuz Mayis University for the financial support given to this project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1519). Services for accessing these data are described at the back of the journal.

References

Al-Kharafi, F. M., Al-Hajjar, F. H. \& Katrib, A. (1986). Corros. Sci. 26, 257264.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Arslan, B., Kazak, C., Kahveci, B., Ağar, E. \& Şaşmaz, S. (2004). Acta Cryst. E60, o578-0579.
Bruno, G., Nicolo, F., Puntoriero, F., Giuffrida, G., Ricevuto, V. \& Rosace, G. (2003). Acta Cryst. C59, o390-o391.

Cansiz, A., Servi, S., Koparir, M., Altintas, M. \& Digrak, M. (2001). J. Chem. Soc. Pak. 23, 237-239.
Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Comput.), pp. 2-24. (In Russian.)
Drabent, K., Biaoska, A. \& Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224 227.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gupta, A. K. \& Bhargava, K. P. (1978). Pharmazie, 33, 430-431.
Jones, D. H., Slack, R., Squires, S. \& Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676-680.
Kahveci, B. \& Ikizler, A. A. (2000). Turk. J. Chem. 24, 343-351.
Kane, J. M., Dudley, M. W., Sorensen, S. M. \& Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.
Kaszuwara, W., Leonowicz, M. \& Ukasiewicz, A. (1992). Mater. Lett. 12, 429433.

Massa, S., Di Santo, R., Retico, A., Artico, M., Simonetti, N., Fabrizi, G. \& Lamda, D. (1992). Eur. J. Med. Chem. 27, 495-502.
Prins, R., Biagini-Cingi, M., de Graaff, R. A. G., Haasnoot, J., ManottiLanfredi, A. M., Rabu, P., Reedijk, J. \& Ugozzoli, F. (1996). Inorg. Chim. Acta, 248, 35-44.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Sughen, J. K. \& Yoloye, T. (1978). Pharm. Acta Helv. 58, 64-68.
Yilmaz, V. T., Agar, E., Guven, K., Kahveci, B. \& Sasmaz, S. (2004). Cryst. Res. Technol. 39, 811-814.
Zhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. \& You, X.-Z. (2000). Acta Cryst. C56, 895-896.

